[email protected]

+1 (203) 503-8995

Under Review

  1. †*Chen, Xi; Newsome, G. Asher; Buchanan, Michael; Glasper, Jeremy; Hua, Leyan; Latif, Mohsen; Gandhi, Viraj; Li, Xintong; Larriba-Andaluz, Carlos Flow Optimization of Gas Jet Desorption for Ambient Sampling of Non-proximate Surfaces. Submitted to Journal of the American Society of Mass Spectrometry (2022). (F 3.977)
  2. †*Viraj D. Gandhi, *Leyan Hua, *Xuemeng Chen, *Mohsen Latif, Carlos Larriba-Andaluz. A Critical Review of the two-temperature theory and the derivation of matrix elements. High field Ion mobility and energy calculation for all-atom structures in light gases using a 4-6-12 potential. Submitted to Talanta (2022) (F. 6.05)
  3. †*Viraj D. Gandhi, *Kyle Short, Carlos Larriba-Andaluz A numerical tool to calculate ion mobility at high fields from all-atom models. Submitted to Journal of Aerosol Science (2022) (F. 4.586)


  1. †*Chen Xi, *Mohsen Latif, *Viraj D. Gandhi, *Xuemeng Chen, *Leyan Hua, Nobuhiko Fukushima, Carlos Larriba-Andaluz Enhancing Separation and Constriction of Ion Mobility Distributions in Drift Tubes at Atmospheric Pressure Using Varying Fields. Analytical Chemistry (2022) https://doi.org/10.1021/acs.analchem.2c00467 (I.F. 6.35)
  2. †*Mohsen Latif, *Gandhi, V. Larriba-Andaluz, C. Gamez, Gerardo, Field-Switching Repeller Flowing Atmospheric-Pressure Afterglow Drift Tube Ion Mobility Spectrometry Journal of the American Society of Mass Spectrometry (2021). https://pubs.acs.org/doi/10.1021/jasms.1c00309 (I.F 3.977)
  3. †Harrilal, C., *Gandhi, V. *Buchanan, M., Smith, R, Larriba-Andaluz, C. Measurement and Theory of Gas Phase Ion Mobility Shifts Resulting from Isotopomer Mass Distribution Changes. Analytical Chemistry (2021)https://doi.org/10.1021/acs.analchem.1c01736  (I.F. 6.35)
  4. INVITED PERSPECTIVE REVIEW (Young Featured Issue) Larriba-Andaluz, C. A perspective on the theoretical and numerical aspects of Ion Mobility Spectrometry International Journal of Mass Spectrometry (2021)  https://doi.org/10.1016/j.ijms.2021.116719 (I.F. 2.09)
  5. †*Gandhi, V. Larriba-Andaluz, C. Predicting ion mobility as a function of the electric field for small ions in light gases. Analytica Chimica Acta (2021) https://doi.org/10.1016/j.aca.2021.339019  (I.F. 5.977)
  6. †Pei Su, *Xi Chen, …, Carlos Larriba-Andaluz and Julia Laskin Multiplexing of Electrospray Ionization Sources Using Orthogonal Injection into an Electrodynamic Ion Funnel. Analytical Chemistry (2021) https://doi.org/10.1021/acs.analchem.1c02092  (I.F. 6.35)
  7. †Cristian Vicent, Victor Martinez-Agramunt, *Viraj Gandhi, Carlos Larriba-Andaluz, Dmitri Gusev, and Eduardo Peris. Ion Mobility Mass Spectrometry uncovers guest-induced distortions in a supramolecular organometallic metallosquare. Angewandte Chemie (2021) https://doi.org/10.1002/anie.202100914  (I.F. 12.959)
  8. INVITED REVIEW Larriba-Andaluz, C., Prell, J. Fundamentals of Ion Mobility in the Free Molecular Regime. Interlacing the past, present, and future of Ion Mobility calculations. International Reviews in Physical Chemistry 9 (2020)  https://doi.org/10.1080/0144235X. 2020.1826708  (I. F. 10.15)
  9. INVITED REVIEW Larriba-Andaluz, C., Carbone, F. The size-mobility relationship of ions, aerosols, and other charged particulate matter. Journal of Aerosol Science (2020) https://doi.org/10.1016/j.jaerosci.2020.105659 (F. 4.586)
  10. †*Coots, J., *Gandhi, V., *Onakoya, T., *Chen, X., Larriba-Andaluz, C. A parallelized tool to calculate the electrical mobility of charged aerosol nanoparticles and ions in the gas phase, Journal of Aerosol Science, Volume 147, 105570. (2020) https://doi.org/10.1016/j.jaerosci.2020.105570 (I.F. 4.586)
  11. †*Chen, X, *Gandhi, V.,*Coots, J., Fan, Y. , Xu, L., Fukushima, N., Larriba-Andaluz,C. (2019) High Resolution PM0.1 Varying Field Drift Tube Ion Mobility Spectrometer with Diffusion Autocorrection, Journal of Aerosol Science Vol 140, 105485. https://doi.org/10.1016/j.jaerosci.2019.105485 (I.F. 4.586)
  12. †*Chen, X., Raab, S., *Poe, T., Clemmer, D, Larriba-Andaluz,C (2019). Determination of Gas Phase Ion Structures of Polar Homopolymers through High Resolution Ion Mobility Spectrometry-Mass Spectrometry. Journal of American Society of Mass Spectrometry Volume 30, Issue 6, pp 905–918. https://link.springer.com/article/10.1007/s13361-019-02184-9 (I.F 3.977)
  13. Larriba-Andaluz, C., *Xi, C., *Nahin, M., *Wu,T, Fukushima, N. (2018) Analysis of Ion Motion and Diffusion Confinement in Inverted Drift Tubes and Trapped Ion Mobility Spectrometry Devices. Analytical Chemistry 91, 1, 919–927 https://10.1021/acs.analchem.8b03930 (I.F. 6.350)
  14. †*Wu, T., *Derrick, J., *Nahin, M., *Chen, X., Larriba Andaluz, C. (2018). Optimization of long-range potential interaction parameters in ion mobility spectrometry. Journal of Chemical Physics, 148(7). https://api.elsevier.com/content/abstract/scopus_id/85042231931  (I.F. 2.991)
  15. †*Nahin, M., Oberreit, D., Fukushima, N., Larriba Andaluz, C. (2017). Modeling of an Inverted Drift Tube for Improved Mobility Analysis of Aerosol Particles. Scientific Reports, 7(1). https://api.elsevier.com/content/abstract/scopus_id/85026208910 (F. 3.998)
  16. †*Shrivastav, V., *Nahin, M., Hogan, C. J., Larriba Andaluz, C. (2017). Benchmark Comparison for a Multi-Processing Ion Mobility Calculator in the Free Molecular Regime. Journal of the American Society for Mass Spectrometry, 28(8), 1540-1551. https://api.elsevier.com/content/abstract/scopus_id/85024120352 (I.F 3.977)
  17. Larriba Andaluz, C., *Nahin, M., *Shrivastav, V. (2017). A contribution to the amaranthine quarrel between true and average electrical mobility in the free molecular regime. Aerosol Science and Technology, 51(7), 887-895. https://api.elsevier.com/content/abstract/scopus_id/85018321306  (I.F. 3.6)
  18. Larriba Andaluz, C., Girshick, S. L. (2017). Controlled Fluxes of Silicon Nanoparticles to a Substrate in Pulsed Radio-Frequency Argon–Silane Plasmas. Plasma Chemistry and Plasma Processing, 37(1), 43-58.https://api.elsevier.com/content/abstract/scopus_id/84989836840  (I.F. 2.664)
  19. †*Thomas, J. M., He, S., Larriba-Andaluz, C., DePalma, J. W., Johnston, M. V., Hogan, Jr, C. J. (2016). Ion mobility spectrometry-mass spectrometry examination of the structures, stabilities, and extents of hydration of dimethylamine–sulfuric acid clusters. Physical Chemistry Chemical Physics, 18(33), 22962–22972. (F. 3.567)
  20. †*Czerwinska, I., Far, J., Kune, C., Larriba-Andaluz, C., Delaude, L., De Pauw, E. (2016). Structural analysis of ruthenium–arene complexes using ion mobility mass spectrometry, collision-induced dissociation, and DFT. Dalton Transactions, 45(15), 6361–6370. (F. 4.052)
  21. †Oberreit, D., Rawat, V. K., Larriba-Andaluz, C., *Ouyang, H., McMurry, P. H., Hogan, Jr, C. J. (2015). Analysis of heterogeneous water vapor uptake by metal iodide cluster ions via differential mobility analysis-mass spectrometry. The Journal of chemical physics, 143(10), 104204. (F. 2.991)
  22. Larriba-Andaluz, C., *Fernández-García, J., Ewing, M. A., Hogan, C. J., Clemmer, D. E. (2015). Gas molecule scattering & ion mobility measurements for organic macro-ions in He versus N2 environments. Physical Chemistry Chemical Physics, 17(22), 15019–15029. (F. 3.567)
  23. †*Ouyang, H., He, S., Larriba-Andaluz, C., Hogan, Jr, C. J. (2015). IMS–MS and IMS–IMS investigation of the structure and stability of dimethylamine-sulfuric acid nanoclusters. The Journal of Physical Chemistry A, 119(10), 2026–2036. (F. 2.600)
  24. †Maißer, A., *Thomas, J. M., Larriba-Andaluz, C., He, S., Hogan, C. J. (2015). The mass–mobility distributions of ions produced by a Po-210 source in air. Journal of Aerosol Science, 90, 36–50. (F. 4.586)

Book Chapters

  1. †Campuzano, I. D., Larriba, C., Bagal, D., Schnier, P. D. (2015). Ion Mobility and Mass Spectrometry Measurements of the Humanized IgGk NIST Monoclonal Antibody. State-of-the-Art and Emerging Technologies for Therapeutic Monoclonal Antibody Characterization Volume 3. Defining the Next Generation of Analytical and Biophysical Techniques (pp. 75–112). American Chemical Society. ISBN13: 9780841230316 eISBN: 9780841230323



 Before IUPUI (From 2006 – July 2015)

 Refeered Journals & Book Chapters (Not Separated)

  1. Ajay Kumar, Seungkoo Kang, Larriba C., Hui Ouyang, Christopher J Hogan and R Mohan Sankaran “Ligand-free Ni nanocluster formation at atmospheric pressure via rapid quenching in a microplasma process”, Nanotechnology 25 (2014) 385601 (F. 3.551)
  2. Larriba C., Hogan C. “On Collision Cross Section Calculations for Polyatomic Ions Considering Rotating Diatomic/Linear Gas Molecules” (2014) The Journal of Chemical Physics A14.08.0283 (I.F. 2.991)
  3. Larriba C., Fernández de la Mora J., Clemmer, D.E. “Electrospray Ionization Mechanisms for Large Polyethylene Glycol Chains studied through Tandem Ion Mobility Spectrometry” Journal of the American Society for Mass Spectrometry, Volume 25, Issue 8 (2014), Page 1332-1345 (F. 3.202
  4. Hui Ouyang, Larriba C., Derek R. Oberreit, & Christopher J. Hogan Jr.“The Collision Cross Sections of Iodide Salt Cluster Ions in Air via Differential Mobility Analysis-Mass Spectrometry “ Journal of the American Society for Mass Spectrometry, Volume 24, Issue 12 (2013), Page 1833-47 (F. 3.202)
  5. Ranganathan Gopalakrishnan, Mark J. Meredith, Larriba C. and Christopher J. Hogan Jr.* “Brownian Dynamics Determination of the Bipolar Steady State Charge Distribution on Spheres and Non-spheres in the Transition Regime” Journal of Aerosol Science, Volume 63, September (2013), Pages 126–145 (F. 2.649)
  6. Larriba C., Hogan C. “Free Molecular Collision Cross Section Calculation Methods for Nanoparticles and Complex Ions with Energy Accommodation” Journal of Computational Physics, 251, 344 (2013). (F. 2.845)
  7. Larriba C., Hogan C. “Momentum Transfer Collision Cross Sections and Ion Mobilities in Diatomic Gases: Measurement vs. Prediction with Non-Specular Scattering Models” Journal of Physical Chemistry A  http://dx.doi.org/10.1021/jp312432z, 117, 3887 (2013). (F. 2.600)
  8. Chonglin Zhang, Thaseem Thajudeen, Larriba C., Thomas E. Schwartzentruber and Christopher J. Hogan Jr.The Scalar Friction Factor for Non-spherical Particles and Aggregates Across the Entire Knudsen Number Range from Dimensional Analysis and Direct Simulation Monte Carlo (DSMC)”. Aerosol Science and Technology 46(10): (2012) 1065-1078 (F. 2.340)
  9. Larriba, C., Fernandez de la Mora, J. “Production of monodispersed submicron sized droplets of dielectric liquids by injection of charges from highly conducting liquids” (2011) Physics of Fluids 23, 102003. (F. 3.514)
  10. Larriba, C., Fernandez de la Mora, J. “The Gas Phase Structure of Coulombically Stretched Polyethylene Glycol Ions” Journal of Physical Chemistry B 116(1): 593-598 (2011) http://dx.doi.org/10.1021/jp2092972. (F. 2.857)
  11. Larriba, C., Hogan, C. et al. “The Mobility-Volume Relationship below 3.0 nm examined by Tandem Mobility-Mass Measurement” Aerosol Science and Technology 45(4): 453-467 (2011) (F. 2.340)
  12. Larriba, C., Fernandez de la Mora, J., “Electrospraying insulating liquids via charged nanodrop injection from the Taylor cone of an ionic liquid” Physics of Fluids 22, 072002. (2010) (F. 3.514)
  13. Larriba, C., “Production of ions & particles via simple and compound electrosprays in vacuum, gases or liquids (polar and non-polar)”. Ph.D. Thesis, Yale University. (2010)
  14. Larriba, C., Y. Yoshida, et al. “Correlation between surface tension and void fraction in ionic liquids” Journal of Physical Chemistry B 112(39): 12401-12407. (2008) (F. 2.857)
  15. Larriba, C. et al. “Ionic Liquids IV, not just solvents anymore”, (Book) American Chemical Society, 2007 chapter 21. ISBN 0841274452, 9780841274457 (2008)
  16. Yoshida, Y., O. Baba, Larriba, C. “Imidazolium-based ionic liquids formed with dicyanamide anion: Influence of cationic structure on ionic conductivity.” Journal of Physical Chemistry B 111(42): 12204-12210. (2007) (F. 2.857)
  17. Larriba, C., Castro, S. et al. “Monoenergetic source of kilodalton ions from Taylor cones of ionic liquids.” Journal of Applied Physics 101(8): 1-6. (2007) (F. 2.328)
  18. Castro, S., Larriba, C. et al. “Effect of liquid properties on electrosprays from externally wetted ionic liquid ion sources.” Journal of Applied Physics 102 (9): 1-6. (2007) (F. 2.328)
  19. Garoz, D., C. Bueno, Larriba, C. “Taylor cones of ionic liquids from capillary tubes as sources of pure ions: The role of surface tension and electrical conductivity.” Journal of Applied Physics 102(6): 064913 1-10. (2007) (F. 2.328)