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a b s t r a c t

The structures of nanoparticles, macromolecules, and molecular clusters in gas phase envi-
ronments are often studied via measurement of collision cross sections. To directly com-
pare structure models to measurements, it is hence necessary to have computational
techniques available to calculate the collision cross sections of structural models under
conditions matching measurements. However, presently available collision cross section
methods contain the underlying assumption that collision between gas molecules and
structures are completely elastic (gas molecule translational energy conserving) and spec-
ular, while experimental evidence suggests that in the most commonly used background
gases for measurements, air and molecular nitrogen, gas molecule reemission is largely
inelastic (with exchange of energy between vibrational, rotational, and translational
modes) and should be treated as diffuse in computations with fixed structural models. In
this work, we describe computational techniques to predict the free molecular collision
cross sections for fixed structural models of gas phase entities where inelastic and non-
specular gas molecule reemission rules can be invoked, and the long range ion-induced
dipole (polarization) potential between gas molecules and a charged entity can be consid-
ered. Specifically, two calculation procedures are described detail: a diffuse hard sphere
scattering (DHSS) method, in which structures are modeled as hard spheres and collision
cross sections are calculated for rectilinear trajectories of gas molecules, and a diffuse tra-
jectory method (DTM), in which the assumption of rectilinear trajectories is relaxed and
the ion-induced dipole potential is considered. Collision cross section calculations using
the DHSS and DTM methods are performed on spheres, models of quasifractal aggregates
of varying fractal dimension, and fullerene like structures. Techniques to accelerate DTM
calculations by assessing the contribution of grazing gas molecule collisions (gas molecules
with altered trajectories by the potential interaction) without tracking grazing trajectories
are further discussed. The presented calculation techniques should enable more accurate
collision cross section predictions under experimentally relevant conditions than pre-
existing approaches, and should enhance the ability of collision cross section measurement
schemes to discern the structures of gas phase entities.
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1. Introduction

Electrical/ion mobility spectrometry has become a standard technique to characterize nanoparticles, macromolecules,
and molecular clusters in the gas phase. In general, the electrical/ion mobility (ZpÞ and diffusion coefficient (DpÞ of an ion
traveling at low subsonic speeds in the free molecular regime [1–5], follow the relations:

Zp ¼
pmred

8kT

� �1=2 3ze
4qgasX

¼ Dpze=kT; ð1Þ

where k is Boltzmann’s constant, T is the background gas temperature, mred is the reduced mass of the nanoparticles–gas
molecule system, and qgas is the background gas mass density. As all other parameters in Eq. (1) depend primarily on back-
ground gas conditions, experimental measurements in the free molecular regime of charged nanoparticles and ions invari-
ably lead to the inference of the collision cross section (X, the orientationally averaged first collision integral). The collision
cross section alone quantifies the amount of momentum transferred to a nanoparticle by the impingement of surrounding
gas molecules, leading particles of differing size and structure to migrate differentially through a background gas. It is hence
essential to develop procedures to calculate collision cross sections for modeled nanoparticle structures, such that experi-
mental measurements can be compared directly to models, or to structures inferred via experimental techniques [6].

There have been considerable efforts made prior along these lines, beginning with the theoretical studies of Langevin [7],
Cunningham [8], and Lenard [9] in the early 20th century, and the subsequent kinetic theory proposed by Epstein [10] in an
attempt to match the experimental measurements of Millikan [11,12] of spherical oil drops in a diatomic gas. With the
exceptions of the analyses by Langevin and Lenard, these efforts focused specifically on spherical particles substantially lar-
ger than surrounding gas molecules, for which long range potential interactions between nanoparticles and gas molecules
(ion-induced dipole interactions [13]) are negligibly small. A key result from these studies is that for predictions to fall in
line with the Millikan measurements as well as with more recent measurements on nanoparticles [14–22], energy accom-
modation and non-specular gas molecule scattering between impinging gas molecules and particles must be considered, i.e.
neither is gas-molecule translational kinetic energy necessarily conserved during collision, nor are gas molecules necessarily
reemitted from the surface of a particle at the specular angle.

Subsequent notable analysis of momentum transfer by Chan and Dahneke [23], Garcia-Ybarra and Rosner [24], Rosner
et al. [25], Meakin et al. [26], Fernandez de la Mora [27], and Zurita-Gotor [28] has revealed the difficulty of calculating col-
lision cross sections for complex molecular structures theoretically; only convex symmetric structures are easily tractable,
due to the mathematical complexity of the non-linear (or linearized by Chapman–Enskog [29] expansion) Maxwell Boltz-
mann integro-differential equation and to the associated boundary conditions on the particle surface. Accordingly, Chan
and Dahneke [23], developed a Monte Carlo algorithm to predict the collision cross section of straight chains of spheres,
where elements with parasitic drag coefficients (scattering and concave effects) were calculated separately and then added
together. This approach circumvents the need to solve the integro-differential equations directly, and later Nakamura and
Hidaka [30] as well as Mackowski [31] employed a similar momentum transfer algorithm to predict the drag and thermoph-
oretic forces of quasifractal aggregate nanoparticles.

In a separate line of research, focusing not on matching the results of Millikan’s oil drop experiments (or subsequent re-
lated measurements) but rather on direct mobility measurements of gas phase ions of similar size to gas molecules them-
selves, Mason and McDaniel [1,32] also developed numerical algorithms for collision cross section calculation. Their
approach can consider complex, non-spherical nanoparticle shapes and short-range potentials interactions. These methods
were adapted by Li andWang [33,34] for calculation of the collision cross sections of spherical nanoparticles, considering both
energy accommodation during gas molecule impingement and the Rudyak–Krasnolutski potential interaction [35] between
particles and gas molecules. Moreover, Jarrold and co-workers have developed MOBCAL [13,36,37] based upon these meth-
ods, which is a suite of algorithms used to calculate collision cross sections from atomic models. MOBCAL enables calculation
of the cross sectional integral in three differentmanners: (1) the projected-area (PA) approximation, in which the orientation-
ally averaged projected area of a structure is equated with its collision cross section, (2) elastic/exact hard sphere scattering
(EHSS) calculations [36], in which gas molecules are assumed to have elastic (translational kinetic energy-conserving) and
specular collisions with hard-sphere modeled atoms of a structure, and (3) trajectory (TM) method calculations in which
Lennard–Jones potentials between gas molecules and atoms within a structure are considered (with the elastic, specular
collision assumptionmaintained) [13]. In the examination of small (several hundred to several thousandDaltons inmass) ions
in He background gas [38,39], collision cross sections predictedwith the latter two procedures agreewell with experimentally
measured collision cross sections, with particularly good agreement found between measurements and TM predictions.

In recent examinations of both ambient [40] and biologically derived nanoparticles/ions [41] (the two most frequently
studied systems of charged entities immersed in a gaseous medium), helium and monoatomic gases have been used less fre-
quently for measurements of charged nanoparticles and ions than have more abundantly available diatomic gases. The MOB-
CAL suite of algorithms has hence been applied for predictions of collision cross sections not only in helium background gas
[38,39,42], but also in a number of studies in diatomic gas studies [41,43]. However, from the wealth of experimental mea-
surements now available [14–22], it has become clear that the specular, elastic collision model predictions which are intrin-
sic to MOBCAL do not agree with measurements in diatomic gases; hence without modification, MOBCAL calculations are not
appropriate for comparison to diatomic bath gas measurements. Attempts to modify MOBCAL for diatomic gas calculations
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have been made by Kim and co-workers [44–46], though the result is computationally not feasible for application to all-atom
models of nanoparticles larger than tens of atoms. Further, for sufficiently small nanoparticles, long range ion-induced dipole
interactions must be accounted for in collision cross section calculations and, pending the inclusion of such interactions, it
has not yet been shown that the methods of Mason and McDaniel are applicable.

Regrettably, the development of collision cross section calculation methods which can consider energy accommodation
upon collisions and which agree with experimental measurements of nanoparticles in diatomic gases has stalled in recent
years, and a method to predict nanoparticle collision cross sections efficiently considering finite sized gas molecules, com-
plex nanoparticle structures, long range potential interactions, and energy accommodation during collision, is hitherto
unavailable. Therefore, our purpose in this work is to develop a suite of algorithms to calculate collision cross sections con-
sidering all of these influences. These algorithms build upon the work of Epstein [10] as well as Chan and Dahneke [23] and,
in a parallel manner to the three algorithms incorporated into MOBCAL, we also describe three algorithms for collision cross
section calculation, ranging in level of detail from projected area approximations up to gas molecule trajectory calculations
with detailed nanoparticle structures and non-specular gas molecule-particle collisions. We note that unlike MOBCAL, which
provides three seemingly distinct collision cross section predictions, these algorithms are interrelated and will lead to similar
predictions (albeit with increasing accuracy for calculations with greater detail). Moreover, in the presented algorithms full
momentum transfer is calculated, allowing for the possibility of real gas-molecule and gas–gas interactions for large scale
simulations [47] as well as bulk velocity considerations.

2. Theoretical and numerical approach

2.1. Collision cross section calculation procedures

2.1.1. Method descriptions

We propose that the collision cross section for a nanoparticle, molecular cluster, molecule, or ion migrating in a back-
ground gas can be calculated with one of the three following computational methods, noted in order of increasing complex-
ity and detail:

(1) The projected area (PA) method. In the PA method, the orientationally averaged projected area is determined for the
structure of interest accounting for gasmolecule-structure interaction. To do so, the atoms or base units of the structure
as well as the gas molecule are given prescribed hard sphere radii. Calculations of this type are discussed elsewhere
[37,48–51] and are not described in detail here. In prior PA methods, the orientationally averaged projected area itself
is treated as a first approximation to the collision cross section [43,52]. However, it is clear that this approximation
would only apply in instances where (a) the structure under examination is sufficiently convex, such that multiple col-
lisions by a gasmolecule upon close approach to the structure are negligible, (b) the atomswithin both the gasmolecule
and nanoparticle have negligible rotational and vibrational energies with respect to translational gas speeds, leading to
specular and elastic collisions only, and (c) the long range potential interactions have no bearing on momentum trans-
fer. Instances where these three criteria are met are atypical for structurally complex entities in a diatomic background
gas, and instead we propose that the collision cross section in the PA method should be calculated as:

X ¼LnPA; ð2aÞ

where PA is the orientationally averaged projected area, n is a dimensionless momentum transfer factor which depends
in themanner inwhich gasmolecules impinge upon and are reemitted from the structure, andL is a dimensionless fac-
tor accounting for the influence of long range potential interactions. These two dimensionless factors must be deter-
mined either from experimental data (e.g. the Millikan data set suggests that n ¼ 1:36 [19,20]) or from calculations on
model structures. The development of correct PA methods provides direct link between the physical dimensions of a
structure and the amount of momentum transferred by impinging gas molecules. However, while the incorporation
of the correction factors likely leads to a more accurate PA method than does their omission, and PA calculation itself
is not computationally intensive, we note that the decomposition of the collision cross section given by Eq. (2a) is by
nomeans theoretically rigorous, and likely only applies for specificmodes gasmolecule scattering fromsurfaces and spe-
cific functional forms for the long range potential. For this reason, computations of greater detail need to be performed.

(2) The diffusive hard sphere scattering (DHSS) method. The next level of complexity in collision cross section calculation is
to perform gas molecule scattering calculations with hard-sphere structures of interest (again with prescribed radii for
the base units of the structure and the gas molecule), neglecting any potential interactions between gas molecule and
structure. This leads to the determination of the hard-sphere collision cross section XHS, from which the full collision
cross section is then calculated as:

X ¼LXHS; ð2bÞ

XHS calculation with purely specular, elastic collisions is incorporated into MOBCAL’s EHSS method [36], with inelastic,
non-specular scattering methods considered by others [23,31]. Here, we generalize hard sphere collision cross section
calculations, and in the subsequent section we discuss how to perform such calculations for arbitrary structures and
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with arbitrary gas molecule scattering laws. As elastic, specular scattering between gas molecules and a structure only
apply in the absence of rotational and vibrational energy (when modeling gas molecules as spheres and structures as
frozen entities), we term this method the diffusive hard sphere scattering (DHSS) method, distinguishing it from the
existing EHSS method.

(3) Diffusive trajectory method (DTM). Like Eq. (2a), Eq. (2b) is an approximation which may only apply for particular scat-
tering rules and for particular long range potentials. Therefore, even more rigorous calculation of X requires calcula-
tion of the momentum transfer to a structure by monitoring the trajectories of oncoming gas molecules in the
presence of long range potentials. Following the discussion of the DHSS method, we discuss such trajectory calcula-
tions, with the resulting method termed the diffusive trajectory method (DTM).

A comparison of DHSS and DTM predictions with specific gas molecule scattering laws to experimentally measured col-
lision cross sections (for polyethylene glycol and tetralkylammonium ions in air) is given in a related research report [53].
This report specifically examines two non-specular gas molecule scattering rules in the calculations and concludes with an
empirical justification for Eq. (2a), and validity of the PA method. Although some details on the DHSS and DTM methods are
also given, much greater detail on the computation methods is provided here. Further, the performance of these methods in
predicting the collision cross sections of model structures, both aggregated ensembles of spheres and fullerenes, is discussed
in terms of the number of gas molecule collisions which must be simulated and, in the DTM method, the timestep required
for convergence.

2.1.2. Traditional collision cross section calculation techniques

To determine collision cross sections through calculation of the degree of momentum transfer from gas molecules to a
structure, one approach, invoked frequently for spheres [10], is the determination of the force ðd~_PÞ on a small surface element
of the structure brought about by the impingement of gas molecules. This force can be calculated using the equation:

d
~_P ¼ ÿqgas

Z

c�n<0
q0ðc!

0
� n!

0
Þc!

0
d
3
c0dS; ð3Þ

where qgas is the mass density of the gas, n
!
is the unit outward normal from the surface of the structure, c

!0
is the gas mol-

ecule velocity vector, and q0 is the gas molecule velocity vector distribution function. When the gas molecule velocity vector
is skewed by a bulk velocity vector V

!
, integration of the force on each surface element over the entire surface of a structure

yields the drag tensor, from which the collision cross section can be extracted. While simple to calculate for each surface
element, Eq. (3) conveys two major problems. The first one deals the intrinsic difficulty of integrating over a non-simple,
generally non-convex surface. The second problem is specific of concave surfaces, where there will be some inaccessible sur-
face regions which are impenetrable for gas molecules, and others for which parasitic drag, brought about by multiple col-
lisions of the gas molecule, are present.

Therefore, an alternative procedure is invoked in the DHSS and DTM methods, in which it is necessary to (a) select a suit-
able control volume in which (b) an appropriate sampling of gas molecules can be introduced and where one can (c) monitor
gas molecule motion through the control volume, until each examined molecule eventually exits, and (d) relate the change in
momentum of entering and exiting gas molecules to the drag force on the structure. These four steps are first discussed for
DHSS calculations, with the modifications needed for DTM calculations discussed subsequently.

2.2. Gas molecule velocity distributions

Wewill express the gas molecule velocity vector distribution function as q0 in the presence of a bulk flow V
!
. Assuming the

gas molecules are in thermal equilibrium, dimensionlessly the distribution function may be written as:

q� ¼ 1
p

� �3=2

expðÿðkc!� ÿ V
!

�k2Þ; ð4Þ

where ‘‘⁄’’ denotes in this case dimensionless variables ðq0 ¼ h
3q�Þ, normalized using the most probable gas molecule speed

h ¼ 2kT
mgas

� �1=2
(with mgas equal to the mass of a gas molecule).

In cases where the structure of interest is diffusing through the medium, or when mobility measurements are made at
lowMach numbers, nonlinear effects can be removed from this distribution via the Chapman–Enskog expansion [29], giving:

q� ¼ 1
p3=2

expðÿð c
!�2þ V

!�2
ÿ2c

!� � V
!

�ÞÞ � q�
0 þ 2ðc!� � V

!
�Þq�

0 ¼ q�
0 þ q�

1; ð5aÞ

where q0 is the classical Maxwell–Boltzmann velocity distribution:

q0 ¼ mgas

2pkT

� �3=2

exp ÿmgasðc2Þ
2kT

� �

: ð5bÞ

In Eq. (5a), the distribution function is conveniently separated into two terms. The second term accounts for gas molecule
motion in the direction of the bulk velocity, while the first term, the Maxwell–Boltzmann distribution, must impart no
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net momentum transfer to the particle as it is exclusively independent of the velocity V. Therefore, this first term can be
neglected for rectilinear gas molecule trajectories, encountered in DHSS calculations.

2.3. Control volume selection

The goal in control volume selection is to define a domain and corresponding boundary surfaces which completely en-
close the structure of interest, and which enable the determination of the net momentum transfer that every gas molecule
imparts on the structure while minimizing the need to monitor the trajectories of gas molecules which contribute negligibly
to the force on the structure. Of the possible polyhedra that can be used to surround a given object, we opt to use one of two
domains for all calculations, either a cuboid or a sphere. The former is used when the structure of interest is appreciably
skewed, while the latter is applied to globular objects. To specifically determine the domain shape and dimensions, the min-
imum length, width, and height for a cuboid and minimum radius for a sphere required to enclose a structure are deter-
mined. Of these two, the domain of minimum volume is selected as the control volume.

2.3.1. Cuboid control volume

To perform momentum transfer calculations with a cuboid, it is first necessary to calculate the volumetric flow of gas
molecules through each of the cuboid’s faces. For this purpose, the bulk velocity is oriented perpendicular to one of the cu-
boid faces, i.e. V

!
¼ Vi. Because of the neglect of q0 in the gas molecule velocity distribution, negative numerical flows result

in some regions of the control surface (e.g. on the face opposing the velocity), as the perturbation distribution q1 is based on
a dot product (c

! �V
!
Þ, which becomes negative every time a particular gas molecule enters the domain against the bulk veloc-

ity. This negative flow is physically unreal; in the numerical algorithm the contribution of ‘‘negative’’ gas molecules must be
subtracted from the net momentum transfer (i.e. they contribute ‘‘negative’’ momentum). Therefore, positive and negative
flows into the control volume must be examined separately so as to not cancel their contributions.

First, considering the front wall, through which the bulk velocity enters, the dimensionless volumetric flowrate Q frnt per
unit of dimensionless area (A�,with A denoting a dimensional area) is given by the equation:

Q frnt

A�
frnt

¼
Z

c�n<0
q�

1ð c
!� � n!Þd3

c�; ð6Þ

where n is the outwards normal to the control surface and the gas molecules that account for the incoming flow are only
those that come into contact with the wall from the outside, leading to c � n < 0. Using Cartesian coordinates, with which
c� ¼ ðu�;v�;w�Þ:

Q frnt

A�
frnt

¼ 1
p3=2

Z 1

0

Z 1

ÿ1

Z 1

ÿ1
2V�u�2eÿðu�2þv�2þw�2Þdu

�
dv

�
dw

� ¼ V�=2; ð7Þ

where u� is only positive. Note that Eq. (7) has been solved for using the following integrals:
Z 1

ÿ1
eÿx2dx ¼

ffiffiffiffi

p
p

;

Z 1

ÿ1
x2eÿx2dx ¼ 1=2

ffiffiffiffi

p
p

;

Z 1

ÿ1
x4eÿx2dx ¼ ð3=4Þ

ffiffiffiffi

p
p

;

Z 1

0
xeÿx2dx ¼ 1=2;

Z 1

0
x3eÿx2dx ¼ 1=2;

Z 1

0
x5eÿx2dx ¼ 1: ð8a-fÞ

Conversely, for the back wall, where ‘‘negative’’ gas molecule flow enters:

Qback

A�
back

¼ ÿ1
p3=2

Z 1

0

Z 1

ÿ1

Z 1

ÿ1
2V�u�2eÿðu�2þv�2þw�2Þdu

�
dv

�
dw

� ¼ ÿV�=2; ð9Þ

where the subscript ‘‘back’’ denotes the back wall. For the side walls, positive (+) and negative (ÿ) flowmust be differentiated
as:

Q sideþ
A�
side

¼ 1
p3=2

Z 1

0

Z 1

0

Z 1

ÿ1
2u�

v
�eÿðu�2þv�2þw�2Þdu

�
dv

�
dw

� ¼ V�=2p; ð10Þ

Q sideÿ
A�
side

¼ ÿ1
p3=2

Z 1

0

Z 1

0

Z 1

ÿ1
2u�

v
�eÿðu�2þv�2þw�2Þdu

�
dv

�
dw

� ¼ ÿV�=2p; ð11Þ

where (8a-f) have again been used and u varies from ð0;1Þ and ðÿ1;0Þ for positive and negative flows, respectively. The
total flow through any of the side walls will add up to 0 unless otherwise separated. Following Garcia-Ybarra and Rosner
[24] and Mackowski [31], the total number of gas molecules passing through each surface (NÞ given by the volumetric flow-
rate and gas molecule number concentration (nÞ, over a period time (tT) is:

Nfrnt ¼ nhV
�
AfrnttT=2; ð12Þ

Nside ¼ nhV
�
AsideitT=2pþ j ÿ nhV

�
AsideitT=2pj ¼ nhV

�
AsideitT=p; ð13Þ

348 C. Larriba, C.J. Hogan Jr. / Journal of Computational Physics 251 (2013) 344–363



Author's personal copy

Expressing the total number of gas molecules entering the control volume as N ¼ 2Nfrnt þ 2Nside1 þ 2Nside2, and eliminating tT
from (12) and 13 leads to:

Nfrnt ¼
NAfrnt=2

Afrnt þ ð2Aside1 þ 2Aside2Þ=p
; ð14Þ

Nsidei ¼
NAsidei=p

Afrnt þ ð2Aside1 þ 2Aside2Þ=p
; ð15Þ

where each of the parallel sides (1 and 2) has been considered separately. Similarly, solving for tT gives:

tT ¼
2N

nhV
�ðAfrnt þ ð2Aside1 þ 2Aside2Þ=pÞ

: ð16Þ

Once the volumetric flowrates have been estimated, it is necessary to establish the appropriate thermal speed and angu-
lar distributions sampled for gas molecules entering the control volume. For the walls perpendicular to the bulk motion
(front and back) these distributions are intrinsically the same, and the position on the surface from which the particles
are set in motion will be chosen randomly. In spherical coordinates the emission angles must obey the relationship:

K1

p3=2

Z p=2

0

Z 2p

0

Z 1

0
2V�c�2 cos2ðhÞeÿðc�2Þc�2 sinðhÞdhd/dc� ¼ 1; ð17Þ

where the inclination angle h represents the deviation from the positive x direction up to p=2, and the azimuth angle / varies
from 0 to 2p, which permits only those molecules that comply with c � n < 0 to be reckoned. Also in Eq. (17), c� denotes the
gas molecule (scalar) speed, and K1 is a constant set to normalize the left hand side of the equation.

A key benefit to selecting a cuboid for the control volume is that Eq. (17) is separable in c�, h, and /. Therefore, not only is
it possible to bypass the sampling of the speed, as it is the same for all angles and positions, but also the angles are separable.
In DHSS calculations, collision and re-emission rules do not depend on the speed of the colliding gas molecule, and gas mol-
ecule trajectories are rectilinear. Hence with DHSS calculations it is possible to simply emit gas molecules into the control
volume at their average speed (�ce

�), which is given by the relationship:

�c�e ¼
R1
0 2V�c5eÿðc2Þdc

R1
0 2V�c4eÿðc2Þdc

¼ 8
3

ffiffiffiffi

p
p : ð18Þ

To select a speed from the appropriate distribution (q1) in lieu of using the mean speed, the procedure outlined by Chan and
Dahneke [23] may be used. Furthermore, for DHSS calculations, the emission angles can be sampled as follows [31]. First, two
uniformly distributed random variables within the range ½0;1�, R1 and R2, are selected. These random numbers are related to
the emission angles through the relationships:

R1 ¼ 3
Z h

0
cos2ðhÞ sinðhÞdh; ð19aÞ

R2 ¼ 1=2p
Z /

0
d/: ð19bÞ

Isolating the angles gives:

cosðhÞ ¼ R1=3
1 and / ¼ 2pR2: ð19c-dÞ

Similarly, for the walls parallel to the bulk flow, the probability of the distribution can now be written as:

K1

p3=2

Z p=2

0

Z 2p

0

Z 1

0
2V�c�2 cos2ðhÞeÿðc�2Þc�2 sin2ðhÞ cosð/Þdhd/dc� ¼ 1: ð20Þ

Here, the angles have been chosen so that h ¼ 0 defines the vector normal to the wall, and the positive x direction is given by
h ¼ p=2 and / ¼ 0. Again, all variables are separable and the angles can be sampled from:

sinðhÞ ¼ R1=3
3 and / ¼ 2R4 ÿ 1; ð21a-bÞ

where R3 and R4 are again uniformly distributed random variables on the interval ½0;1�.

2.3.2. Spherical control volume

Similar to a cuboidal control volume, the flow of gas molecules through a spherical control volume also needs to be par-
titioned into gas molecules which transmit positive momentum, and gas molecules which transmit ‘‘negative’’ momentum.
However, unlike the cuboid, in which a front wall and a back wall can be clearly defined, the choice of direction for the bulk
flow vector for a spherical control volume cannot simplify gas molecule volumetric flow calculations, and ‘‘negative’’ gas
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molecules may in fact pass through the control surface at almost any point. The dimensionless positive volumetric flow rate
entering the sphere (spþ) is given by:

Q spþ ¼ ÿ
I Z

V �c<0

c�n<0
2V
!�

� c!�ð c!� � n!Þd3
c�dA

�
sp: ð22Þ

where dA
�
sp is the dimensionless surface element on the sphere. We note that in Eq. (22), only the positive momentum car-

rying volumetric flowrate is considered (V � c < 0), and that the sum of the positive volumetric flowrate and negative volu-
metric flowrate will always be equivalent over a spherical control surface. Since a sphere is completely symmetric, we opt to
leave n

!
fixed (i.e. parallel to the x-axis), and correspondingly integrate over all possible positions of V

!
�. The positive volumet-

ric flowrate is thus given by:

Q �
spþ ¼ 1

p3=2

Z 2p

0

Z p

0

Z 1

0

Z 2p

0

Z p
2

0
2V�R�2

sp ½cosðvÞ cosðhÞ þ sinðvÞ cosðwÞ sinðhÞ cosð/Þ þ sinðvÞ sinðwÞ sinðhÞ

� sinð/Þ� sinðhÞ cosðhÞ sinðvÞc�4eÿc�2dhd/dc
�
dvdw

¼ ð3=4ÞpV�R�2
sp ; ð23Þ

where Rsp is the radius of the sphere, and the dimensionless sphere radius, R�
sp, is often set to 1. v and w are the inclination

and azimuthal angles on the sphere, respectively, both of which are integrated over the entire spherical surface. h and / are
the local angles with respect to the normal and describe the angular position of the velocity vector at position n. h ¼ 0 rep-
resents the normal entering direction and is maximally bounded between 0 and p=2, so as to only consider c � n < 0. To com-
pute the integral in Eq. (23), the bounds provided lead to the condition:

½cosðvÞ cosðhÞ þ sinðvÞ cosðwÞ sinðhÞ cosð/Þ þ sinðvÞ sinðwÞ sinðhÞ sinð/Þ� > 0: ð24Þ

The total number of positive momentum gas molecules crossing the control surface is then easily defined using Eq. (23). Also
accounting for the volumetric flowrate of ‘‘negative’’ momentum bearing gas molecules with the number of emitted gas mol-
ecules as:

N ¼ ð3=2ÞpnhV�
tTR

2
sp ¼ ð3=8ÞnhV�

tTAwsp: ð25aÞ

where Awsp ¼ 4pR2
sp is the wetted surface area of the sphere. The total time tT required for N gas molecules to cross into the

control volume is then determined as:

tT ¼ 8N
3nhV�

Awsp

: ð25bÞ

Finally, to examine momentum transfer from incoming gas molecules, it is necessary define gas molecule initial positions
and trajectories. In DHSS calculations, Eq. (18) may be similarly used for the speed of all incoming gas molecules into a spher-
ical control volume, as can the Chan and Dahneke [23] sampling scheme when a distribution of speeds in required. However,
the angles defining the trajectory initially must be different through a different manner, as they are not separate from one
another, and further depend upon position on the control surface (v and w). A reasonably simple method to determine v, w, h
and /, is to choose random values for all 4 angles within their given domains and check if they comply with the criteria in
Eqs. (23) and (24). If the chosen angles do not, then a new set of random selected angles must be selected, and the process
repeats until a suitable combination is found.

2.4. Collision and reemission rules

Once the control volume and the corresponding initial positions and velocity vectors of gas molecules have been defined,
the trajectories, impingement, and reemission of gas molecules can be analyzed. Given the direction of an entering gas mol-
ecule, we immediately determine if the collision between gas molecule and the structure will occur using the following pro-
cedure: A gas molecule entering the control volume at position x0 with unit velocity direction vector v0 has a perpendicular
distance, D, from an atom/base unit of the structure with its center of mass at cm:

D ¼ jðcm
! ÿx

!
0Þ ÿ ððcm

! ÿx
!

0Þ � v
!

0Þv
!

0j: ð26Þ

If D is less than the sum (R) of the gas molecule radius and the atom/base unit radius (both modeled as spheres) then the gas
molecule would collide with the atom/base unit in question, with the collision point xs defined as:

x
!
s ¼ x

!
0 þ ðcm

! ÿx
!

0Þ � v
!

0 ÿ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 ÿ D2
p� �

v

!
0: ð27Þ

If a collision is detected, an event is counted, and the collision point is determined from the minimum distance the gas
molecule must travel to collide with the structure (as D may be less than sum of the gas molecule radius and the atom/base
unit radius for multiple atoms/base units). Correspondingly, the outward normal vector from the collision point, nout , is
calculated as:
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nout

! ¼ x
!

s ÿ cm
!

: ð28Þ

Identification of the collision point permits calculation of the reemission trajectory. Ideally, this would be accomplished
throughmolecular dynamicmodeling of not only gasmolecules, but also the atomswithin a structure. However, this approach
is presently computationally too expensive to employ for structures composed of more than a handful of atoms, and with the
use of rigid structural models, a specific, semi-empirical reemission model is required. As noted in the introduction section,
several different reemission laws are available in the literature, including a specular reemission rule with conservation of
gasmolecule translational energy (elastic scattering), and various forms of diffuse reemission, with random reemission angles
and thermal accommodation of the gas molecule relative to the internal energy of the structure it collides with [10].

Although the specular, elastic reemission law alone is invoked in MOBCAL algorithms, this is not in line with experimental
measurements in diatomic gases. A succinct derivation [53] reveals that when the analytic derivation of Eq. (1) is compared
with experimental measurements of 1.5–10 nm spherical particles [12,14,19,20,54], X is equivalent to 1.36PA. The specular,
elastic reemission rule cannot reproduce this result for realistically sized gas molecules (the specular model yields X ¼ PA for
a smooth sphere), and with this failure of specular models, alternative, diffuse reemission rules need to be input into DHSS
and DTM algorithms. However, the precise reemission rules which lead to experimental observations are presently unclear
[55], and future work is necessary to elucidate the physics of such collisions. A commonly invoked explanation of experimen-
tal observations is that of Epstein [10], who proposed a number of specular and diffuse reemission rules. In the most prom-
inent of these diffuse rules, gas molecules are reemitted at a random angle from the surface of a structure, with the
reemission speed sampled from a Maxwell–Boltzmann distribution at the temperature of the surface (complete thermal
accommodation). When applied to a sphere, this rule, attempting to mimic instant exchange between atomic vibrational
and rotational energy from both the gas molecule and the structure with gas molecule translational energy, yields
X ¼ ð1þ p=8ÞPA � 1:39PA. To better match experimental results, Epstein, with Millikan, introduced an ‘‘accommodation
coefficient’’ a, which is the fraction of impinging gas molecules which obey Epstein’s diffuse reemission rule, with the
remaining 1ÿ a colliding specularly and elastically with a structure. a ¼ 0:91 leads to good agreement with most experi-
mental results. Epstein also proposed a second diffuse reemission rule, in which gas molecules are reemitted at a random
angle, but retain their translational energy. Applying this rule to a sphere yields X ¼ ð1þ 9p=64ÞPA � 1:44PA, and would re-
quire an accommodation coefficient of 0.81 to match experimental data. Based on the existing precedent of invoking these
reemission rules, in the present work we also invoke Epstein’s diffuse reemission rules as well as the specular reemission
rule to be used in DHSS and DTM calculations, with an input accommodation coefficient defining the fraction of gas molecule
collisions which obey the prescribed diffuse reemission rule (either with complete thermal accommodation or with con-
served translational energy). We do note, however, that the algorithms provided here can be modified to handle alternative
reemission rules, and that reemission rules can be proposed which agree with experimental results without the use of an
accommodation coefficient [53].

For the diffusely reemitted gas molecules with complete thermal accommodation, the dimensionless reemitted speed (c�r )
from the collision point can be determined from the equation:

K1

p3=2

Z h

0

Z /

0

Z c

0
c�3r eÿðc�2r Þ cosðhÞ sinðhÞdhd/dc�r ¼ R5; ð29Þ

where R5 is a uniformly distributed random variable on the interval ½0;1� and K1 retains its definition from Eq. (17). Note that
if the structure is at a different specified temperature than the surrounding gas (i.e. thermal equilibrium is not established
between gas molecule and the structure), then the dimensionless reemitted speed distribution in Eq. (29) must be adjusted
accordingly to reflect this temperature difference. Like Eqs. (17) and (20), all variables are separable in Eq. (29), and with
rectilinear trajectories in DHSS calculations, the speed of all reemitted gas molecules can be determined as the mean reemis-
sion speed, �c�r :

�c�r ¼
R1
0 2V�c�4eÿðc�2Þdc

�
R1
0 2V�c�3eÿðc�2Þdc

� ¼
3

ffiffiffiffi

p
p

4
; ð30Þ

which differs from the mean speed for gas molecules entering the control surface. The reemission angles for diffuse reemis-
sion are calculated as:

cosðhÞ ¼ R1=2
6 and / ¼ 2pR7: ð31a-bÞ

where R6 and R7 are again defined as uniformly distributed random variables on ½0;1�. For gas molecules that collide spec-
ularly, the unit direction vector of reemission (v

!
r) is calculated deterministically as:

v

!
r ¼ v

!
0 ÿ 2ðv!0 � n

!Þ n! : ð32Þ

Each time an emitted gas molecule collides with a structure, a uniform random variable on ½0;1� is calculated. If this value is
less than the prescribed value of a, diffusive reemission rules are followed; otherwise, specular rules are used. Following
reemission, the collision check is again performed, and in the event of a subsequent collision, a new random number is
calculated and the reemission speed and direction are again determined using the selected reemission rule. This process
is repeated for each emitted gas molecule until they leave the control volume through the control surface.
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2.5. Collision cross section determination

After N gas molecules have been introduced into the control volume, requiring a total time tT (Eq. (16) or (25b)), the drag
force on the structure when placed in a specific orientation relative to the oncoming flow, F

!
D, is given by the relationship:

F
!
D ¼ ÿhmgas

tT
ð�c�e I

!
þ�c�r I

!
rÞ � signðV

!
� u!Þ; ð33aÞ

where:

I
!
¼

X

M

i¼1

v

!̂
0 and I

!
r ¼

X

M

i¼1

v

!̂
r ; ð33b-cÞ

where M is the total number of collision events per N emitted gas molecules, v
!̂
0 and v

!̂
r are the incoming and reemitted unit

velocity vectors, and signðV
!
� u!Þ distinguishes positive momentum from negative momentum bearing gas molecules. When tT

is substituted for accordingly, it becomes clear that the drag force is linearly related to the bulk velocity, which is specifically
due to the linearization of the gas molecule velocity distribution function (and hence only applies at low speeds relative to
the mean thermal speed). Further, the collision cross section also does not vary with bulk velocity in this limit in the absence
of potential interactions. Supposing that all orientations of the structure relative to the bulk flow are equally probable, a drag
tensor [B] can be constructed by calculating the drag force produced by the bulk flow in three perpendicular directions, leav-
ing the dimensionless drag tensor with terms evaluated as:

Bij ¼ Iij þ �c�r=�c
�
eIrij : ð34Þ

This drag tensor, irrespective of the structure of interest, is symmetric and positive definite, provided that no rotation is im-
parted on the structure. As demonstrated by Happel and Brenner [56], such a drag tensor can be diagonalized, and following
diagonalization the orientationally averaged collision cross section can be calculated as:

X ¼ 3
nhtT

1
B11

þ 1
B22

þ 1
B33

� �ÿ1

ð35aÞ

and thus the mobility measured is:

Zp ¼ 1þmgas

mw

� �1=2 3
ffiffiffiffi

p
p

ze

8nhmgasX
; ð35bÞ

where Bii denotes the principal values of the drag tensor and mw is the molecular weight of the ion (the mass factor in Eq.
(35b) 1þ mgas

mw

� �1=2
is necessary to correct for the inertial mass that appears in a regular two body problem). We note further

that orientation weighted collision cross sections could also be determined from the described approach; whether or not
nanometer scale ions are aligned preferentially during mobility measurements will need to be determined in future work
for commonly employed measurement conditions.

2.6. Modifications for the diffuse trajectory method

Several significant changes must be made to the presented method to incorporate the influence of potential interactions
on collisions. Overwhelmingly, for charged nanoparticles and ions migrating through non-monoatomic gases, the ion-in-
duced dipole (polarization) potential has the strongest influence on collision dynamics. Therefore, we consider only this
interaction potential here. Shorter range Lennard–Jones forces may also be included in calculations, though at a substantial
cost of computation speed. Further, we contend that with appropriately sized atoms/base units in a structure at the temper-
ature in question, hard sphere model predictions will agree reasonably well with predictions incorporating Lennard–Jones
potentials.

For singly charged, spherical entities, the polarization potential becomes significant at diameters smaller than approxi-
mately 1.4 nm in air or molecular nitrogen background gas, and at larger sizes in stronger polarizability gases such as carbon
dioxide. The polarization energy, Upol, for a gas molecule which is a distance ri from a net charge ze, is given by [32]:

Upol ¼ ÿ apolz
2e2

8pee0r4i
; ð36Þ

where apol is the polarizability of the background gas molecules (�1.7 Å3 for air, N2, and O2), e0 is the permittivity of free
space, and e is the background gas dielectric constant. The first major change to the computation method necessary to incor-
porate the influence of this potential is the modification of the gas molecular velocity distribution function; since the trajec-
tory each gas molecule takes in the presence of a potential is dependent on its initial velocity, the initial velocity distribution
must be defined completely. Therefore, rigorously, the influence of the Maxwell–Boltzmann term, q0 in Eq. (5) cannot be
neglected (though the possibility of its exclusion is examined in the results and discussion section of this work). This point
is overlooked in MOBCAL’s trajectory method [13], and q0 is neglected when potentials are included in this calculation which
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may affect results for charged structures of similar sizes to gas molecules themselves. Including q0 in the gas molecule veloc-
ity distribution function, however, drastically increases computation time, and we hence consider simplifying this distribu-
tion without a significant loss in precision.

All DTM calculations are performed using a cuboid control volume, and with the inclusion of the full gas molecule velocity
distribution, the dimensionless volumetric flowrate per area through the front ðf ;þÞ and back ðb;ÿÞ walls is calculated as:

Q fb�
A�
fb

¼ 1
p3=2

Z p=2

0

Z 2p

0

Z 1

0
ð1� 2V�c� cosðhÞÞeÿðc�2Þc�3 cosðhÞ sinðhÞdc�dhd/ ¼ 1

4
ffiffiffiffi

p
p � V�

; ð37Þ

Q side�
A�
side

¼ 1
p3=2

Z p=2

0

Z 2p

0

Z 1

0
ð1� 2V�c� cosð/Þ sinðhÞÞeÿðc�2Þc�3 cosðhÞ sinðhÞdc�dhd/ ¼ 1

2p3=2
� V�: ð38Þ

In Eq. (37) the + and ÿ correspond to the front and back walls respectively, while in Eq. (38) + and ÿ correspond to the gas
molecule flow aligned with the bulk flow or opposing the bulk flow, respectively. With the total number of emitted gas mol-
ecules, N, the number of gas molecules introduced on the front and back walls (NfbT) is expressed as:

NfbT ¼ N

1þ AsideT

AfbT

ð39aÞ

and correspondingly the total number introduced to side walls (NsideT) is expressed as:

NsideT ¼ NfbT

AsideT

AfbT

ð39bÞ

where the subscript ‘‘T’’ denotes the sum (of the number or the area) of the front and back wall or all side wall contributions.
The total time taken for these molecules to pass through the control volume is determined as:

tT ¼
ffiffiffiffi

p
p

NfbT

nhAfbT

ð40Þ

Similarly, in the DTMmethod the distributions fromwhich to select the gas molecule initial speeds (note that in this case the
mean speed may not be used for all gas molecules) are expressed as:

dq�
fb ¼ K4e

ÿc�2 c
!� � n!ð1ÿ 2V

!
� � c!�Þd3

c� ¼ 4
1�

ffiffiffiffi

p
p

V� ð1� 2V�c� cosðhÞÞeÿc�2c�3 sinðhÞ cosðhÞdhd/dc� ð41aÞ

for the front and back walls, and for the side walls:

dq�
side ¼ K5e

ÿc�2 c
!� � n!ð1ÿ 2V

!
� � c!�Þd3

c� ¼ 4
p� 2

ffiffiffiffi

p
p

V� ð1� 2V�c� sinðhÞ cosð/ÞÞeÿc�2c�3 sinðhÞ cosðhÞdhd/dc�; ð41bÞ

where the � sign has the usual connotation. Emission speeds and angles are selected via the equation:
Z

dq�
fb;side ¼ R8 ð41cÞ

in an analogous fashion to speed and angle selection in Eq. (29).
The second major change necessary for DTM calculations is that gas molecule trajectories are no longer rectilinear. To

allow for the initial velocity vectors to be selected with Eqs. (41a)–(41c), on the control surface, the potential energy to ther-
mal energy ratio, W:

W ¼ PE

KE
¼ apolz

2e2

12pe0kTr
4
0

; ð42Þ

must be sufficiently low. In air or molecular nitrogen at 304 K with a singly charged entity, the radius r0 at which W ¼ 0:005
is 15.9 Å, thus in addition to enclosing the structure of interest, the control surface is at least 15.9 Å from any charge located
on the structure. This distance is adjusted accordingly when 2 or more charges are in the system, so as to ensure that W is
kept at 0.5%.

To then calculate gas molecule trajectories through the control volume, a modified velocity-Verlet algorithm is employed.
This algorithm, and other alternatives, are discussed in detail elsewhere [57]. The timestep utilized in calculations is chosen
in an effort minimize CPU cost, with the dimensional timestep, Dt, chosen as:

Dt ¼ min b1
r2c
z2

;b2r
2
a

� �

; ð43Þ

where b1 and b2 are input parameters, rc and ra are the distances to the closest charged point or neutral atom, respectively,
and z is the number of elemental charges at distance rc . In the calculations performed to date, the values of b1 and b2 have
been chosen so that the timestep varies normally between 10ÿ14 and 10ÿ16 s for molecular nitrogen gas at atmospheric
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pressure and 304 K, where larger timesteps are employed at greater distances from the structure. Overall, this method allows
for efficient calculation of trajectories, such that DTM computations can be performed on modern desktop and laptop com-
puters, requiring <24 h of time for structures composed of thousands of atoms. While the trajectories are being calculated,
we make use of an optimized collision detector that allows calculation of the impact position on the structure. Once the col-
lision has been detected, a bisection method calculates the impaction point on the structure with a .001% error.

The third set of changes needed for DTM calculations focus on the reemission rules. As in DHSS calculations, colliding gas
molecules are reemitted either by a diffuse rule or the specular rule, with an input accommodation coefficient determining
the fraction of gas molecules obeying each rule. However, when invoking the diffuse reemission rule with thermal accom-
modation, rather than simply reemitting gas molecules at a mean speed (Eq. (30)), the speed distribution (Eq. (29)) is sam-
pled to determine each reemission speed, and the increase in kinetic energy that the gas molecule received as it moved from
the initial point on the control surface to the contact point (because we consider attractive potentials, the kinetic energy is
always higher at contact) is added to the sampled reemission speed as:

cr ¼ c2M þ 2
P

Upolðx
!
s ÿ x

!
iÞ

mgas

0

@

1

A

1=2

; ð44Þ

where cM is the Maxwell speed calculated from the distribution, xi is the position of the charges and xs the reemission point.
The use of a sampled speed from a distribution, rather than the use of the mean speed, is necessary as it allows the method to
account for the influence of gas molecules reemitted at low speeds, which may be drawn back towards the structure for sub-
sequent collisions by the polarization potential. The addition of the gained kinetic energy by the gas molecule into the
reemission ensures conservation of energy applies to the examined system.

As a final note on adjustments made for DTM calculations, in the presence of potential interactions, all gas molecules will
have their momentum altered as they pass through the control volume, independent of whether they directly collide with
the structure. Therefore, in Eqs. (33a)–(33c), the number of collision events M and the number of sampled gas molecules N

are exactly equal in DTM calculations. Instances in which gas molecules transfer momentum to a structure without direct
collision are referred to as ‘‘grazing’’ collisions, and are addressed in Section 3.

3. Results and discussion

3.1. Example calculation conditions

The DHSS and DTMmethods are evaluated in terms of the number of gas molecules trajectories which must be monitored
for convergence to the calculated collision cross section, considering both diffuse and specular reemission rules. The sensi-
tivity of DTM calculations to timestep is also investigated. DTM calculations are further performed under specific dimen-
sional conditions, at atmospheric pressure, a temperature of 304 K in molecular nitrogen gas (with gas molecules
modeled as spheres with a radii of 1.5, a value based on experimental measurements of the physical dimensions of the
N2 molecule [58]), with a bulk speed of 40 m/s (a typical speed for charged, nanoscale entities in linear mobility spectrom-
eters [2,18], and well below the mean thermal speed).

DHSS calculations are first examined for a smooth sphere, and subsequently for ensembles of spheres as point-contacting
quasifractal aggregates, which approximately obey the relationship Nprim ¼ kf ðRg=aprimÞDf , where Nprim is the number of base
unit spheres in the aggregate, kf is a dimensionless pre-exponential factor (set to 1.3 for all calculations), Rg is the aggregate
radius of gyration, aprim is the base unit radius, and Df is the fractal dimension, ranging from 1.0 for a perfect straight chain to
3.0 for a densely packed structure. Soot nanoparticles frequently adopt this morphology [59], as do many inorganic nanopar-
ticles synthesized in high temperature reactors [60], hence the transport and reactivity of such particles are of considerable
interest [48,49,51,61]. Random quasifractal aggregates, satisfying the noted relationship with a prescribed Nprim and Df are
generated using a cluster–cluster aggregation method as is described by Filippov et al. [62]. With such aggregates and pre-
scribed gas molecule reemission rules, the validity of Eq. (2a) withL ¼ 1 is examined, i.e. whether a constant n can link the
collision cross section and orientationally averaged projected area for varying shapes and modes of gas molecule-structure
collisions under hard sphere conditions is determined. Similar DHSS calculations are also reported for symmetric, isotropic
structures akin to fullerenes. The presented DTM calculations focus on the collision cross section for a singly charged nano-
scale sphere with an N2 sized gas molecule, but under specular conditions. The focus of such collisions is to examine the
parameterL for this simplified case (where n ¼ 1) with additional efforts made to isolate the influence of grazing collisions
from true gas molecule-structure contact collisions and to study the influence of simplifying the gas molecule velocity dis-
tribution function on calculation results.

3.2. DHSS calculations

3.2.1. Spherical structure calculations

Calculations of the collision cross section of a sphere are performed considering 100% specular-elastic collisions (case 1),
100% diffuse collisions with thermal accommodation (case 2), and 100% diffuse collisions without thermal accommodation
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(case 3) with a varying number of gas molecule trajectories monitored. The average value of n ¼ X=PA over 200 separate cal-
culations is shown as a function of the number of gas molecules used in each calculation (in each orientation, with 3 orien-
tations examined) in Fig. 1(a). Immediately apparent is that for all three invoked reemission rules, calculations converge to
the values of n found analytically by Epstein [10], demonstrating the correctness of DHSS calculation collision cross sections.
Further, for all three remission rules, DHSS calculations are found to converge to the collision cross section rather quickly;
after approximately 1000 gas molecule trajectories the RSD is �0.02.

3.2.2. Quasifractal aggregate structure calculations

For specular elastic collisions with an infinitesimal gas molecule, Fig. 1(b) displays the values of n ¼ X=PA for two specific
quasifractal aggregates, one dense (kf ¼ 1:3, Df ¼ 2:4, Nprim ¼ 180, results denoted with open circles) and the other reason-
ably open (kf ¼ 1:3, Df ¼ 1:5, Nprim ¼ 200, results denoted with open circles), as functions of the number of gas molecule
trajectories examined per orientation. Depictions of the aggregates are displayed on the figure. Also shown are the RSDs
for n ¼ X=PA (dense aggregate-short dashed line, open aggregate-solid line) as functions of N; these functions differ from
one another due to the different void volumes inside the control volumes used to analyze these structures (the sphere for
the dense aggregate, and the cuboid for the open aggregate). By instead plotting the RSDs as functions of M, the number

Fig. 1. (a) The relative standard deviation and X=PA values obtained for DHSS calculations on a sphere with an infinitesimal gas molecule as a function of
the number of simulated trajectories using specular remission rules (case 1), diffuse reemission rules with thermal accommodation (case 2), and diffuse
reemission rules with translational energy accommodation (case 3). (b) The relative standard deviation and X=PA values obtained for DHSS calculations on
quasifractal aggregates under specular elastic conditions identical to (a) case 1. RSD values shown as functions of both the number of trajectories simulated
and the number of collision events.
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of collision events, as is additionally shown, is brought in better agreement with the results for a sphere. However, the result-
ing values of n ¼ X=PAwhich calculations converge to are distinct from the value of 1.00 found for a sphere, with n approach-
ing 1.21 for the dense aggregate and 1.1 for the open aggregate. This increase in n is brought about solely by a fraction of the
gas molecules which enter the control volume and collide with the structure in multiple instances prior to exiting, as the
angle at which such gas molecules leave the control volume relative to the entrance trajectory does not exactly depend
on the manner in which they first collided with the structure, akin to diffuse reemission.

Multiple collisions with specular reemission rules are hence studied for multiple types of quasifractal aggregates, with
results shown in Fig. 2(a) and (b). Specifically, Fig. 2(a) shows n ¼ X=PA as a function of Nprim for kf ¼ 1:3, and Df ¼ 1:5,
1.8, 2.1, and 2.4 (with each result point representing calculations for a single structure satisfying the noted fractal relation-
ship). Best fit curves (linear in X=PA versus log½Nprim�Þ are provided for guidance, and depictions of typical structures with
these fractal parameters are also displayed on the figure. 100,000 gas molecule trajectories are utilized to obtain the dis-
played results, which again are for infinitesimal gas molecules. Fig. 2(b) similarly plots n ¼ X=PA for these aggregates, but
with a gas molecule radius equivalent to the base unit sphere radius. In all cases X=PA increases with increasing Nprim, with
higher values found for higher fractal dimension structures and with finite sized gas molecules. This suggests that for spec-
ular reemission, Eq. (2a) cannot be applied, as n is not independent of the morphology of the structure under examination,
nor the gas molecule size. However, for no tested quasifractal aggregate does X=PA approach the experimentally inferred

Fig. 2. (a) Variation in X=PA values with the number of base units per structure obtained for DHSS calculations on quasifractal aggregates with infinitesimal
gas molecules and specular reemission rules. (b) Similar calculation results with gas molecules with radii equivalent to the base sphere radii.
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value for diatomic gases, and it is known that dense structures of less than 1000 atoms (1000 base units) still lead to n ¼ 1:36
[20], which again emphasizes that the specular reemission rule cannot explain experimental results.

Conversely, as evidenced in Fig. 3 (a plot of n ¼ X=PA as a function of Nprim for kf ¼ 1:3, Df ¼ 1:5, 2.4 aggregates, with dif-
fuse and thermal accommodating as well as diffuse but translational energy conserving reemission rules), when utilizing
both diffuse reemission rules, n differs �2% across the entire Nprim range examined, with only a weak dependence on Df

found. Further, the radius of the gas molecule does not appear to substantially influence these calculations, suggesting that
for diffuse reemission rules, it is possible to define a value n for implementation in Eq. (2a) which is nearly independent of
the structure of the entity under examination, as well as the gas molecule size (results not shown).

3.2.3. Fullerene structure calculations

All examined quasifractal aggregates contain point contacts between base units, which differs from structures modeling
covalently bonded macromolecular ions. We thus elect to examine the collision cross sections of 10 fullerene-like structures
composed of 20, 40, 60, 70, 100, 180, 240, 500, 540 and 720 identical base units, respectively. Each base unit has a radius of
1.7, matching the van der Waals radius of carbon (1.7 Å). Collision cross sections for these structures are calculated using the
specular reemission rule with gas molecule radii of 0, 1.0, and 1.5, and using both diffuse scattering methods with a gas mol-
ecule radius of 1.5. The resulting X=PA for all calculations are shown in Fig. 4, along with depictions of the fullerene struc-
tures. As with the quasifractal aggregates, specular reemission rules are a function of the number of base units in fullerene
structures. However, unlike results found with quasifractal aggregates, the ratio n ¼ X=PA decreases with increasing gas mol-
ecule radius. This is apparently brought about by the inability of larger gas molecules to access the interstitial regions of the
fullerene structures, limiting their ability to collide multiple times with the surface. In spite of this difference in behavior, the
specular scattering X=PA value is still found to be substantially different than is found in non-monoatomic background gas
measurements, and could only approach experimental values for an extremely rough fullerene surface (large NprimÞ and with
gas molecules which are negligibly small compared to the base units. Conversely, both diffuse reemission rules again lead to
seemingly invariant values of n, which converge to the values Epstein calculated for a sphere.

3.3. DTM calculations

3.3.1. Relative standard deviation and fixed time step

A plot of the RSD determined using 20 DTM calculations as a function of the number of gas molecule trajectories mon-
itored for a 4.0 radius spherical structure in N2 background gas with elastic specular reemission rules is shown in Fig. 5. The
convergence rate is much slower than in the DHSS method; in this instance at least 3 million gas molecule trajectories must
be monitored to reach a RSD of 0.02. The large increase in the number of gas molecule trajectories which must be monitored
is brought about by the increased control volume requirements of the polarization potential as well as on the addition of the

Fig. 3. Variation inX=PA values with the number of base units per structure obtained for DHSS calculations on quasifractal aggregates with infinitesimal gas
molecules and diffuse reemission rules. Only results for aggregates with fractal dimensions of 1.5 and 2.4 are shown, and are not distinguished from one
another.
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main distribution q0 (Eq. (5b)). Most of the gas molecules emitted into the control volume exit without direct collision, yet
they still contribute to the structure’s collision cross section. Also in Fig. 5, the ratio X=PA is plotted on the right side y-axis.
Due to polarization, X=PA approaches 1.17 for this spherical particle, and given that n ¼ 1:00 for a sphere with the specular
reemission rule, this result suggests L ¼ 1:17 for these conditions.

The influence of (fixed) timestep on the calculation result is examined in Fig. 6, which is a plot of the normalized com-
puting time required to monitor 3 million trajectories, as well as X=PA variation with timestep for the same conditions noted
for Fig. 5. The timestep is varied in the range 5 � 10ÿ14 to 1 � 10ÿ16 s, and 1 computing time unit is taken as the time re-
quired to complete calculations with a timestep of 5 � 10ÿ14 s (approximately 200 s on a 1.6 GHz single core). While little
variance in X/PA is observed in the examined range, for smaller or more highly charged structures, smaller timesteps
may still be necessary; though these results suggest that timesteps on the larger end of the range examined here may be
used for larger singly charged structures.

Fig. 4. Variation in X=PA values with the number of base units per fullerene structure in DHSS calculations using various reemission rules and gas molecule
radii.

Fig. 5. The relative standard deviation and X=PA values for a 4 Å radius sphere in N2 background gas at 304 K for DTM calculations at atmospheric pressure
and 304 K.
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3.3.2. Grazing collisions with singly charged spheres

Initial DTM calculations indicate the influence of grazing collisions on the collision cross section is significant, yet assess-
ment of grazing gas molecule influence is computationally expensive relative to the influence of direct collisions. We there-
fore attempt to isolate the contributions of grazing collisions, by examining analytically the collision of an infinitesimal gas
molecule with a point charge. Following Kennard [63], one can arrive at a simple differential equation that allows us to
calculate the complete trajectory:

Fig. 6. The normalized computing time required to complete DTM calculations under the conditions noted in Fig. 5 as a function of timestep. X=PA variation
with timestep is also shown.

Fig. 7. The cosine of the deflection angle for grazing collisions with a singly charged structure as a function of the polarization energy at half the gas
molecule impact parameter normalized by its incoming kinetic energy.
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where Cinit is the gas velocity at infinity, r is the polar distance centered on the charge, F is the central force and c is the angu-
lar momentum constant. In the case of an attractive force of the type A=r5, the only solution known is a rather complicated
Jacobi elliptic function with double periodicity [64] where, in the absence of a much needed focused study, other means
must be used to extract information. Nonetheless, as shown elsewhere [65–67], conservation of energy, linear momentum,
and angular momentum leads to a relationship between the gas molecule’s initial impact parameter (b, the initial radial dis-
tance between the gas molecule and the point massand c ¼ bCinit), the minimum radial distance the gas molecule will reach
from the point charge (rmin), and the radially varying potential interaction (U) experienced by the gas molecule:

b
2 ¼ r2min 1þ 2

c2initmred

Z 1

rmin

FðrÞdr
" #

¼ r2min 1þ 2UðrminÞ
c2initmred

� �

: ð46Þ

For the polarization potential, it is foundwith Eq. (46) that in instanceswhere b4
< apolz

2e2=ðpee0C2
initmredÞ a real apside rmin can-

not exist; i.e. the gasmolecule collidesdirectlywith the centerof thepoint charge for these conditions. Therefore, irrespectiveof

Fig. 8. (a) The normalized collision cross section of a spherical structure in N2 background gas at 304 K as a function of sphere diameter as determined from
DTM calculations. The contributions of both direct and grazing collisions to the collision cross section are shown. (b) A comparison of collision cross section
calculated for a sphere in N2 background gas at 304 K with the full velocity distribution function as well as the simplified velocity distribution function used
in DTM calculations.
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structure size, a gas molecule will collide with any structure when such conditions are met, while for b
4
> apolz

2e2=

ðpee0C2
initmredÞ, direct collision between a finite sized spherical structure and a gas molecule only occurs when the sum of the

gas molecule and structure radii is less than rmin.
Eq. (46) hence provides a means to distinguish grazing from direct collisions. Fig. 7 shows the DTM-determined cosines of

the deflection angles of grazing gas molecules (determined from their velocity vectors as they leave the control volume rel-
ative to their entering velocity vectors) as functions of 2UpolðrminÞ=ðmredC

2
initÞ, where UpolðrminÞ is the polarization potential cal-

culated at the apsidal distance. Fitting curves are shown for guidance, as are images of the expected trajectories for the gas
molecules (about a finite sized spherical particle) for deflection angles of 0, p=2, p, 3p=2, 2p, 5p=2 and 3p. Clearly evident,
the deflection angle for grazing collisions is defined by the gas molecules initial impact parameter and initial speed. This
information, and a regression fit for the deflection angles in Fig. 7 are hence input into DTM calculations, such that the tra-
jectories of grazing collisions need not be calculated for singly charged structures; rather, grazing collisions are immediately
identified (by circumscribing the structure with a sphere) using the noted inequality, and the momentum transferred to a
structure by grazing gas molecules is calculated directly.

3.3.3. Collision cross section enhancement by polarization

With grazing molecules directly accounted for, the collision cross section of a spherical structure of finite radius in N2

background gas can be determined. Calculations such as these enable determination of the functionL with prescribed scat-
tering rules and, for prescribed structures, the determination of a single function which describes all results would support
the approximately validity of Eqs. (2a) and (2b). Fig. 8(a) shows the collision cross section of a singly charged sphere, con-
sidering specular scattering, as a function of the sphere diameter (in nanometers). The influence of grazing collisions and
direct contact collisions is shown separately, with the total collision cross section determined as the sum of the collision
cross sections due to these two collision types. 10 million gas molecules are used for each result point, and reported collision
cross sections are normalized by a characteristic length r0 based on the polarization energy:

r20 ¼ apole
2

12pe0kT

� �1=2

: ð47Þ

Noticeable in Fig. 8(a) a limit in collision cross section is reached when the diameter of the sphere reaches approximately
0.4 nm and varies little as the sphere size is decreased below this value. For a temperature of 304 K, Eq. (47) yields a value
of 107.32 Å2 for N2, and thus the collision cross sectional limit under the calculation conditions is approximately 86 Å2 (with-
out N2); lower collision cross sections are not possible, unless the mass of the structure is well below that of the back ground
gas molecules (simulations are performed on infinite mass structures).

3.3.4. Simplification of DTM calculations

Even with direct calculation of grazing collision contributions, DTM calculations are still slowed by the need to incorpo-
rate the contribution of the general Maxwell distribution, q0, into calculations. The distribution is not simplified mainly be-
cause doing so would incorrectly define the trajectories of the incoming gas molecules, particularly for gas molecules that
enter from the front or back walls of the control volume, which have velocities of cþ V and cÿ V respectively and hence
behave differently in the presence of potentials. However, if V is sufficiently small such that it scarcely influences trajecto-
ries, then the simplification of the gas molecule velocity distribution employed in DHSS calculations (and in Mason and
McDaniel’s methods) can be made for DTM calculations as well. With DTM calculations as presented, there already is a
restriction on V, as the linearization of the velocity distribution only applies when the bulk speed is substantially smaller
than the mean thermal speed. Fig. 8(b) hence compares DTM calculations performed using the full gas molecule velocity dis-
tribution function to those performed using the simplified distribution function where the factor 2 � V is purposefully omit-
ted from Eqs. (17) and (18) so that the molecules have a reasonable speed for the acting potentials. Calculation conditions are
identical to those presented in Fig. 8(a), with Fig. 8(b) having 10 million and 300,000 trajectories used with the full and sim-
plified distributions, respectively. For this particular instance, reasonable agreement is found, suggesting that a simplified
distribution function can be used under some circumstances, but caution should be exercised prior to making this
simplification.

4. Conclusions

Three methods of collision cross section calculation are proposed, which are distinct from existing methods and can ac-
count for the influences of non-specular scattering and the ion-induced dipole potential between incoming gas molecules
and a structure. The latter two of these methods, the DHSS and DTM methods, are described in detail and are applied to
collision cross section calculations for spheres, quasifractal aggregates, and fullerene-like structures. DHSS and DTM results
are then compared to the simple projected area approximation results. Overall, DHSS and DTM results converge to known
analytical solutions when tested under the appropriate circumstances, and appear capable of predicting collision cross sec-
tions in non-monoatomic gases. Further study utilizing these methods should enable comparison of collision cross section
measurements to predicted collision cross sections for structural models of nanoparticle and macromolecular ions [53].
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Moreover, continued development of these methods would allow for the inclusion of gas molecule–gas molecule interac-
tions in order to examine momentum transfer at lower Knudsen numbers, at both high and low bulk speeds.
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